Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.259
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 12(1): 74, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720399

RESUMO

The combination of DNA methylation analysis with histopathological and genetic features allows for a more accurate risk stratification and classification of meningiomas. Nevertheless, the implications of this classification for patients with grade 2 meningiomas, a particularly heterogeneous tumor entity, are only partially understood. We correlate the outcomes of histopathologically confirmed grade 2 meningioma with an integrated molecular-morphologic risk stratification and determine its clinical implications. Grade 2 meningioma patients treated at our institution were re-classified using an integrated risk stratification involving DNA methylation array-based data, copy number assessment and TERT promoter mutation analyses. Grade 2 meningioma cases according to the WHO 2021 criteria treated between 2007 and 2021 (n = 100) were retrospectively analyzed. The median clinical and radiographic follow-up periods were 59.8 and 54.4 months. A total of 38 recurrences and 17 deaths were observed. The local control rates of the entire cohort after 2-, 4-, and 6-years were 84.3%, 68.5%, and 50.8%, with a median local control time of 77.2 months. The distribution of the integrated risk groups were as follows: 31 low, 54 intermediate, and 15 high risk cases. In the multivariable Cox regression analysis, integrated risk groups were significantly associated with the risk of local recurrence (hazard ratio (HR) intermediate: 9.91, HR high-risk: 7.29, p < 0.01). Gross total resections decreased the risk of local tumor progression (HR gross total resection: 0.19, p < 0.01). The comparison of 1p status and integrated risk groups (low vs. intermediate/high) revealed nearly identical local control rates within their respective subgroups. In summary, only around 50% of WHO 2021 grade 2 meningiomas have an intermediate risk profile. Integrated molecular risk stratification is crucial to guide the management of patients with grade 2 tumors and should be routinely applied to avoid over- and undertreatment, especially concerning the use of adjuvant radiotherapy.


Assuntos
Metilação de DNA , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Meningioma/patologia , Meningioma/classificação , Masculino , Feminino , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/classificação , Pessoa de Meia-Idade , Idoso , Adulto , Estudos Retrospectivos , Gradação de Tumores , Idoso de 80 Anos ou mais , Telomerase/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/genética
2.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674001

RESUMO

Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Alvo Mecanístico do Complexo 2 de Rapamicina , Meduloblastoma , Neoplasias Meníngeas , Fatores de Transcrição Otx , Transdução de Sinais , Fatores de Transcrição Otx/metabolismo , Fatores de Transcrição Otx/genética , Humanos , Animais , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Camundongos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/secundário , Feminino , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Masculino
3.
Zhonghua Bing Li Xue Za Zhi ; 53(5): 439-445, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38678323

RESUMO

Objective: To examine whether immunohistochemistry of methylthioadenosine phosphorylase (MTAP) and p16 could be used to predict the CDKN2A status in various brain tumors. Methods: A total of 118 cases of IDH-mutant astrocytomas, 16 IDH-wildtype glioblastoma, 17 polymorphic xanthoastrocytoma (PXA) and 20 meningiomas diagnosed at Xuanwu Hospital, Capital Medical University, Beijing, China from November 2017 to October 2023 were collected and analyzed. The CDKN2A status was detected by using fluorescence in situ hybridization or next-generation sequencing. Expression of MTAP and p16 proteins was detected with immunohistochemistry. The association of loss of MTAP/p16 expression with CDKN2A homozygous/heterozygous deletion was examined. Results: Among the 118 cases of IDH-mutant astrocytoma, 13 cases showed homozygous deletion of CDKN2A. All of them had no expression of MTAP while 9 cases had no expression of p16. Among the 16 cases of IDH wild-type glioblastoma, 6 cases showed homozygous deletion of CDKN2A. All 6 cases had no expression of MTAP, while 3 of these cases had no expression of p16 expression. Among the 17 PXA cases, 4 cases showed homozygous deletion of CDKN2A, and the expression of MTAP and p16 was also absent in these 4 cases. Among the 20 cases of meningiomas, 4 cases showed homozygous deletion of CDKN2A. Their expression of MTAP and p16 was also absent. Among the four types of brain tumors, MTAP was significantly correlated with CDKN2A homozygous deletion (P<0.05), with a sensitivity of 100%. However, it was only significantly correlated with the loss of heterozygosity (LOH) of CDKN2A in astrocytomas (P<0.001). P16 was associated with CDKN2A homozygous deletion in IDH-mutant astrocytoma and PXA (P<0.001), but not with the LOH of CDKN2A. Its sensitivity and specificity were lower than that of MTAP. Conclusions: MTAP could serve as a predictive surrogate for CDKN2A homozygous deletion in adult IDH-mutant astrocytoma, PXA, adult IDH-wildtype glioblastoma and meningioma. However, p16 could only be used in the first two tumor types, and its specificity and sensitivity are lower than that of MTAP.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Inibidor p16 de Quinase Dependente de Ciclina , Homozigoto , Purina-Núcleosídeo Fosforilase , Humanos , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Astrocitoma/genética , Astrocitoma/metabolismo , Meningioma/genética , Meningioma/metabolismo , Meningioma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Deleção de Genes , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Mutação , Masculino , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Feminino , Adulto , Sequenciamento de Nucleotídeos em Larga Escala
4.
Neurosurg Rev ; 47(1): 136, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561568

RESUMO

This letter offers a nuanced evaluation of the recent study on single-cell transcriptome analysis of ECM-remodeling meningioma cells. While acknowledging the positive aspects, such as enhanced understanding of tumor heterogeneity and identification of potential therapeutic targets, it also highlights potential limitations, including challenges in data interpretation and validation.The focus on ECM-remodeling may inadvertently overshadow other critical aspects of tumor biology, necessitating a more holistic approach. The abstract concludes by emphasizing the importance of considering the broader context of tumor heterogeneity and microenvironmental influences in future research endeavors to improve clinical outcomes for patients with meningioma and other malignancies.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Meningioma/patologia , Análise da Expressão Gênica de Célula Única , Matriz Extracelular/patologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia
5.
Ups J Med Sci ; 1292024.
Artigo em Inglês | MEDLINE | ID: mdl-38571886

RESUMO

Meningiomas, the most common primary brain tumors in adults, are often benign and curable by surgical resection. However, a subset is of higher grade, shows aggressive growth behavior as well as brain invasion, and often recurs even after several rounds of surgery. Increasing evidence suggests that tumor classification and grading primarily based on histopathology do not always accurately predict tumor aggressiveness and recurrence behavior. The underlying biology of aggressive treatment-resistant meningiomas and the impact of specific genetic aberrations present in these high-grade tumors is still only insufficiently understood. Therefore, an in-depth research into the biology of this tumor type is warranted. More recent studies based on large-scale molecular data such as whole exome/genome sequencing, DNA methylation sequencing, and RNA sequencing have provided new insights into the biology of meningiomas and have revealed new risk factors and prognostic subtypes. The most common genetic aberration in meningiomas is functional loss of NF2 and occurs in both low- and high-grade meningiomas, whereas NF2-wildtype meningiomas are enriched for recurrent mutations in TRAF7, KLF4, AKT1, PI3KCA, and SMO and are more frequently benign. Most meningioma mouse models are based on patient-derived xenografts and only recently have new genetically engineered mouse models of meningioma been developed that will aid in the systematic evaluation of specific mutations found in meningioma and their impact on tumor behavior. In this article, we review recent advances in the understanding of meningioma biology and classification and highlight the most common genetic mutations, as well as discuss new genetically engineered mouse models of meningioma.


Assuntos
Neoplasias Meníngeas , Meningioma , Adulto , Humanos , Animais , Camundongos , Meningioma/genética , Meningioma/patologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/cirurgia , Fator 4 Semelhante a Kruppel , Mutação , Prognóstico
6.
Redox Biol ; 72: 103137, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642502

RESUMO

The oncogene Aurora kinase A (AURKA) has been implicated in various tumor, yet its role in meningioma remains unexplored. Recent studies have suggested a potential link between AURKA and ferroptosis, although the underlying mechanisms are unclear. This study presented evidence of AURKA upregulation in high grade meningioma and its ability to enhance malignant characteristics. We identified AURKA as a suppressor of erastin-induced ferroptosis in meningioma. Mechanistically, AURKA directly interacted with and phosphorylated kelch-like ECH-associated protein 1 (KEAP1), thereby activating nuclear factor erythroid 2 related factor 2 (NFE2L2/NRF2) and target genes transcription. Additionally, forkhead box protein M1 (FOXM1) facilitated the transcription of AURKA. Suppression of AURKA, in conjunction with erastin, yields significant enhancements in the prognosis of a murine model of meningioma. Our study elucidates an unidentified mechanism by which AURKA governs ferroptosis, and strongly suggests that the combination of AURKA inhibition and ferroptosis-inducing agents could potentially provide therapeutic benefits for meningioma treatment.


Assuntos
Aurora Quinase A , Ferroptose , Proteína Forkhead Box M1 , Meningioma , Fator 2 Relacionado a NF-E2 , Piperazinas , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Aurora Quinase A/metabolismo , Aurora Quinase A/genética , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Animais , Camundongos , Meningioma/metabolismo , Meningioma/genética , Meningioma/patologia , Piperazinas/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética
7.
Anticancer Drugs ; 35(6): 542-547, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513197

RESUMO

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are considered the first-line treatment for advanced or metastatic non-small cell lung cancer (NSCLC) patients harboring EGFR mutations. However, due to the rarity of cases, the response of EGFR-TKIs in patients harboring uncommon compound EGFR mutations still needs to be determined. Here, we demonstrated the case of a 47-year-old smoker diagnosed with leptomeningeal metastasis from NSCLC and had EGFR20 R776S, C797S, and EGFR21 L858R compound mutations. He was treated with furmonertinib combined with intrathecal pemetrexed chemotherapy following progression on osimertinib, which led to clinical improvement and successfully prolonged his survival by 3 months. Regrettably, the patient eventually died from heart disease. This report provides the first reported evidence for the use of furmonertinib and intrathecal pemetrexed chemotherapy in NSCLC patients harboring EGFR R776S/C797S/L858R mutations who progressed on previous EGFR-TKIs.


Assuntos
Acrilamidas , Compostos de Anilina , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Mutação , Pemetrexede , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Pemetrexede/administração & dosagem , Pemetrexede/uso terapêutico , Receptores ErbB/genética , Acrilamidas/administração & dosagem , Acrilamidas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Compostos de Anilina/administração & dosagem , Compostos de Anilina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Injeções Espinhais , Carcinomatose Meníngea/tratamento farmacológico , Carcinomatose Meníngea/secundário , Carcinomatose Meníngea/genética , Neoplasias Meníngeas/secundário , Neoplasias Meníngeas/tratamento farmacológico , Neoplasias Meníngeas/genética , Indóis , Pirimidinas
8.
J Neurooncol ; 167(3): 455-465, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38446374

RESUMO

PURPOSE: Meningiomas are the most common type of brain tumors and are generally benign, but malignant atypical meningiomas and anaplastic meningiomas frequently recur with poor prognosis. The metabolism of meningiomas is little known, so few effective treatment options other than surgery and radiation are available, and the targets for treatment of recurrence are not well defined. The Aim of this paper is to find the therapeutic target. METHODS: The effects of bone morphogenetic protein (BMP) signal inhibitor (K02288) and upstream regulator Gremlin2 (GREM2) on meningioma's growth and senescence were examined. In brief, we examined as follows: 1) Proliferation assay by inhibiting BMP signaling. 2) Comprehensive analysis of forced expression GREM2.3) Correlation between GREM2 mRNA expression and proliferation marker in 87 of our clinical samples. 4) Enrichment analysis between GREM2 high/low expressed groups using RNA-seq data (42 cases) from the public database GREIN. 5) Changes in metabolites and senescence markers associated with BMP signal suppression. RESULTS: Inhibitors of BMP receptor (BMPR1A) and forced expression of GREM2 shifted tryptophan metabolism from kynurenine/quinolinic acid production to serotonin production in malignant meningiomas, reduced NAD + /NADH production, decreased gene cluster expression involved in oxidative phosphorylation, and caused decrease in ATP. Finally, malignant meningiomas underwent cellular senescence, decreased proliferation, and eventually formed psammoma bodies. Reanalyzed RNA-seq data of clinical samples obtained from GREIN showed that increased expression of GREM2 decreased the expression of genes involved in oxidative phosphorylation, similar to our experimental results. CONCLUSIONS: The GREM2-BMPR1A-tryptophan metabolic pathway in meningiomas is a potential new therapeutic target.


Assuntos
Proteínas Morfogenéticas Ósseas , Calcinose , Neoplasias Meníngeas , Meningioma , Transdução de Sinais , Humanos , Meningioma/metabolismo , Meningioma/patologia , Meningioma/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Calcinose/patologia , Calcinose/metabolismo , Calcinose/genética , Proliferação de Células , Senescência Celular , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética
10.
BMC Cancer ; 24(1): 345, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500077

RESUMO

BACKGROUND: Meningioma, the most prevalent intracranial tumor, possesses a significant propensity for malignant transformation. Circular RNAs (circ-RNAs), a class of non-coding RNAs, have emerged as crucial players in tumorigenesis. This study explores the functional relevance of hsa_circ_0004872, a specific circ-RNA, in the context of meningioma. METHODS: Molecular structure and stability of hsa_circ_0004872 were elucidated through PCR identification. Meningioma cell proliferation and apoptosis were assessed using the CCK-8 assay and flow cytometry, respectively. Gene and protein expression were analyzed via qRT-PCR and western blot. Molecular interactions were confirmed through dual-luciferase reporter gene and RIP assays. RESULTS: Hsa_circ_0004872, derived from exons 2 to 4 of the host gene MAPK1, demonstrated enhanced stability compared to its host MAPK1. Clinical data described that hsa_circ_0004872 was reduced in meningioma tissues and cell lines, and negatively correlated to poor survival rate of meningioma patients. Overexpression of hsa_circ_0004872 exhibited inhibitory effects on cell proliferation and promotion of apoptosis in vitro. Subsequent investigations unveiled a direct interaction between hsa_circ_0004872 and miR-190a-3p, leading to the activation of the PI3K/AKT signaling pathway through targeting PTEN. Notably, miR-190a-3p silence accelerated the apoptosis and proliferation inhibition of meningioma cells by inactivating PTEN/PI3K/AKT signaling, while miR-190a-3p overexpression showed an opposite effect, which greatly reversed the anti-tumor effects of hsa_circ_0004872 overexpression. CONCLUSION: In summary, our findings highlighted the intricate role of hsa_circ_0004872 in meningioma, shedding light on the regulatory mechanisms involving circ-RNAs in tumor progression. This positions hsa_circ_0004872 as a potential key regulatory factor in meningioma with implications for future therapeutic interventions.


Assuntos
Neoplasias Meníngeas , Meningioma , MicroRNAs , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Neoplasias Meníngeas/genética , Meningioma/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais/genética
11.
Neurosurg Rev ; 47(1): 118, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491247

RESUMO

Meningiomas are the most common tumours that primarily arise in the central nervous system, but their intratumoural heterogeneity has not yet been thoroughly studied. We aimed to investigate the transcriptome characteristics and biological properties of ECM-remodeling meningioma cells. Single-cell RNA sequencing (ScRNA-seq) data from meningioma samples were acquired and used for analyses. We conducted comprehensive bioinformatics analyses, including screening for differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway and Gene Ontology (GO) term enrichment analyses, Gene Set Enrichment Analysis (GSEA), protein-protein interaction (PPI) analysis, and copy number variation (CNV) analysis on single-cell sequencing data from meningiomas. Eighteen cell types, including six meningioma subtypes, were identified in the data. ECM-remodeling meningioma cells (MGCs) were mainly distributed in brain-tumour interface tissues. KEGG and GO enrichment analyses revealed that 908 DEGs were mainly related to cell adhesion, extracellular matrix organization, and ECM-receptor interaction. GSEA analysis demonstrated that homophilic cell adhesion via plasma membrane adhesion molecules was significantly enriched (NES = 2.375, P < 0.001). CNV analysis suggested that ECM-remodeling MGCs showed considerably lower average CNV scores. ECM-remodeling MGCs predominantly localized at the brain-tumour interface area and adhere stably to the basement membrane with a lower degree of malignancy. This study provides novel insights into the malignancy of meningiomas.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Perfilação da Expressão Gênica , Meningioma/genética , Análise da Expressão Gênica de Célula Única , Variações do Número de Cópias de DNA , Neoplasias Meníngeas/genética
12.
Cytokine ; 176: 156535, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38325141

RESUMO

Increasing evidence suggests the oncogenic role of missense mutation (AKT1-E17K) of AKT1 gene in meningiomas. Upon investigating the connection between the pro-tumorigenic role of AKT1-E17K and cellular metabolic adaptations, elevated levels of glycolytic enzyme hexokinase 2 (HK2) was observed in meningioma patients with AKT1-E17K compared to patients harboring wild-type AKT1. In vitro experiments also suggested higher HK2 levels and its activity in AKT1-E17K cells. Treatment with the conventional drug of choice AZD5363 (a pan AKT inhibitor) enhanced cell death and diminished HK2 levels in AKT1 mutants. Given the role of AKT phosphorylation in eliciting inflammatory responses, we observed increased levels of inflammatory mediators (IL-1ß, IL6, IL8, and TLR4) in AKT1-E17K cells compared to AKT1-WT cells. Treatment with AKT or HK2 inhibitors dampened the heightened levels of inflammatory markers in AKT1-E17K cells. As AKT and HK2 regulates redox homeostasis, diminished ROS generation concomitant with increased levels of NF-E2- related factor 2 (Nrf2) and superoxide dismutase 1 (SOD1) were observed in AKT1-E17K cells. Increased sensitivity of AKT1-E17K cells to AZD5363 in the presence of HK2 inhibitor Lonidamine was reversed upon treatment with ROS inhibitor NAC. By affecting metabolism, inflammation, and redox homeostasis AKT1-E17K confers a survival advantage in meningioma cells. Our findings suggest that targeting AKT-HK2 cross-talk to induce ROS-dependent cell death could be exploited as novel therapeutic approach in meningiomas.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Mutação com Ganho de Função , Hexoquinase/genética , Hexoquinase/metabolismo , Neoplasias Meníngeas/genética , Meningioma/genética , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio
15.
Neurol Med Chir (Tokyo) ; 64(3): 116-122, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38267057

RESUMO

Meningioma is the second most frequent tumor in patients with neurofibromatosis type 2 (NF2). The presence of meningioma is believed to be a negative prognostic marker in these patients. However, the molecular mechanisms involved in the tumorigenesis of NF2-associated meningioma are not well characterized. Epigenetic regulation, including microRNAs (miRNAs), may be involved in the development of different tumor types in patients with NF2. The objective of this study is to explore the different characteristics of serum miRNA expression depending on the presence or absence of meningioma in patients with NF2. Nine patients with NF2 who were treated at the Department of Neurosurgery, Hiroshima University Hospital, were included. Total RNA (including small RNAs) was extracted from serum samples for the preparation of a small RNA library for next-generation sequencing analysis. Differentially expressed miRNAs (DEMs) were analyzed using the DESeq2 package to compare the characteristic miRNA expression profiles of patients with and without meningioma. In small RNA sequencing analysis, out of a total of 1,879 miRNAs registered in the database, the expressions of 657 miRNAs were observed. In DEM analysis, the expressions of four miRNAs, namely, hsa-miR-664b, hsa-miR-7706, hsa-miR-590, and hsa-miR-6513, were downregulated in patients with NF2 with meningioma compared with patients with NF2 without meningioma. Hsa-miR-193a was identified as the only upregulated miRNA in patients with NF2 with meningioma. In conclusion, we identified different circulating miRNA expression characteristics depending on the presence or absence of meningioma in patients with NF2.


Assuntos
Neoplasias Meníngeas , Meningioma , MicroRNAs , Neurofibromatose 2 , Humanos , Meningioma/genética , Neurofibromatose 2/complicações , Neurofibromatose 2/genética , Epigênese Genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Meníngeas/genética
16.
Orphanet J Rare Dis ; 19(1): 30, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38287340

RESUMO

BACKGROUND: The co-existence of meningioma and craniofacial fibrous dysplasia (CFD) is rare. Due to the similar radiological characteristics, it is challenging to differentiate such co-existence from solitary hyperostotic meningioma resulting in a dilemma of prompt diagnosis and appropriate intervention. METHOD: We conducted a retrospective review of the data from 21 patients with concomitant meningioma and CFD who were treated at Beijing Tiantan Hospital from 2003 to 2021. We summarized their clinicopathological features and performed a comprehensive literature review. Additionally, we tested the characteristic pathogenic variants in exon 8 and 9 of GNAS gene and the expression of corresponding α-subunit of the stimulatory G protein (Gαs) related to CFD to explore the potential interactions between these two diseases. RESULTS: The cohort comprised 4 men and 17 women (mean age, 45.14 years). CFD most commonly involved the sphenoid bone (n = 10) and meningiomas were predominantly located at the skull base (n = 12). Surgical treatment was performed in 4 CFD lesions and 14 meningiomas. Simpson grade I-II resection was achieved in 12 out of the 14 resected meningiomas and almost all of them were classified as WHO I grade (n = 13). The mean follow-up duration was 56.89 months and recurrence was noticed in 2 cases. Genetic study was conducted in 7 tumor specimens and immunohistochemistry was accomplished in 8 samples showing that though GNAS variant was not detected, Gαs protein were positively expressed in different degrees. CONCLUSIONS: We presented an uncommon case series of co-diagnosed meningioma and CFD and provided a detailed description of its clinicopathological features, treatment strategy and prognosis. Although a definite causative relationship had not been established, possible genetic or environmental interplay between these two diseases could not be excluded. It was challenging to initiate prompt diagnosis and appropriate treatment for concomitant meningioma and CFD because of its similar radiological manifestations to meningioma with reactive hyperostosis. Personalized and multi-disciplinary management strategies should be adopted for the co-existence of meningioma and CFD.


Assuntos
Displasia Fibrosa Craniofacial , Neoplasias Meníngeas , Meningioma , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/cirurgia , Meningioma/genética , Meningioma/diagnóstico , Meningioma/patologia , Prognóstico , Estudos Retrospectivos , Adulto
17.
Curr Oncol ; 31(1): 579-587, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275834

RESUMO

Primary meningeal melanomatosis is an extremely rare tumor with very few documented responses to treatment. A 3-year-old male with a complex past medical history, including prematurity and shunted hydrocephalus, was diagnosed with primary meningeal melanomatosis with peritoneal implants. Molecular testing revealed an NRAS Q61R mutation. The patient received proton craniospinal radiation followed by immunotherapy with nivolumab (1 mg/kg) and ipilimumab (3 mg/kg) IV every 3 weeks and, upon progression, he was switched to a higher dose of nivolumab (3 mg/kg IV every 2 weeks) and binimetinib (24 mg/m2/dose, twice a day). The patient had significant improvement of CNS disease with radiation therapy and initial immunotherapy but progression of extracranial metastatic peritoneal and abdominal disease. Radiation was not administered to the whole abdomen. After two cycles of nivolumab and treatment with the MEK inhibitor binimetinib, he had radiographic and clinical improvement in abdominal metastasis and ascitis. He ultimately died from RSV infection, Klebsiella sepsis, and subdural hemorrhage without evidence of tumor progression. This is the first report of a child with primary meningeal melanomatosis with extracranial metastatic disease with response to a combination of radiation, immunotherapy and MEK inhibitor therapy.


Assuntos
Melanoma , Neoplasias Meníngeas , Masculino , Criança , Humanos , Pré-Escolar , Nivolumabe , Neoplasias Meníngeas/terapia , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/genética , Melanoma/terapia , Ipilimumab , Quinases de Proteína Quinase Ativadas por Mitógeno
19.
Am J Surg Pathol ; 48(1): 46-53, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947008

RESUMO

The 2021 World Health Organization classification of tumors of the central nervous system emphasizes the significance of molecular parameters for an integrated diagnosis. Homozygous deletion of cyclin-dependent kinase inhibitor 2a (CDKN2A) has been associated with an adverse prognosis in IDH -mutant gliomas, supratentorial ependymomas, meningiomas, and MPNST. In this study, we examined the value of p16 protein immunohistochemistry as a rapid and cost-effective screening tool for a homozygous CDKN2A deletion. Genetic analyses for CDKN2A in 30 pleomorphic xanthoastrocytomas, 32 IDH -wild-type high-grade gliomas, 40 supratentorial ependymomas with ZFTA-RELA gene fusion, 21 IDH-mutant astrocytomas, and 24 meningiomas were performed mainly by a molecular inversion probe assay, a high-resolution, quantitative technology for the assessment of chromosomal copy number alterations. Immunohistochemistry for p16 proved to have a high positive predictive value (range 90% to 100%) and an overall low negative predictive value (range 22% to 93%) for a homozygous CDKN2A deletion. In a setting where molecular testing is limited for cost and time reasons, p16 immunohistochemistry serves as a useful and rapid screening tool for identifying cases that should be subjected to further molecular testing for CDKN2A deletions.


Assuntos
Ependimoma , Glioma , Neoplasias Meníngeas , Meningioma , Humanos , Imuno-Histoquímica , Meningioma/genética , Homozigoto , Deleção de Sequência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Glioma/genética , Neoplasias Meníngeas/genética , Ependimoma/genética , Deleção de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA